2018年9月8日托福阅读真题分析

啄木鸟教育 2018-09-10

        2018年9月8日托福考试难度怎么样?托福阅读部分考了什么?啄木鸟教育老师为大家带来关于本次托福阅读考试的专业分析,希望对大家有帮助!

  综合点评:

  本次考试难度适中,同学平时可以继续练习相关学科的题目,相信充分的练习加上好的心态,同学们可以取得不错的成绩

  Passage one

  学科分类:植物学

  题目:松树有关

  内容回忆:美国有一种生命力很强的松树可以长在别的物种都不能生长的岩石上,而且寿命很长,并且可以通过年轮测树龄

  参考阅读:Survival of Plants and Animals in Desert Conditions

  The harsh conditions in deserts are intolerable for most plants and animals. Despite these conditions, however, many varieties of plants and animals have adapted to deserts in a number of ways. Most plant tissues die if their water content falls too low: the nutrients that feed plants are transmitted by water; water is a raw material in the vital process of photosynthesis; and water regulates the temperature of a plant by its ability to absorb heat and because water vapor lost to the atmosphere through the leaves helps to lower plant temperatures. Water controls the volume of plant matter produced. The distribution of plants within different areas of desert is also controlled by water. Some areas, because of their soil texture, topographical position, or distance from rivers or groundwater, have virtually no water available to plants, whereas others do.

  The nature of plant life in deserts is also highly dependent on the fact that they have to adapt to the prevailing aridity. There are two general classes of vegetation: long-lived perennials, which may be succulent (water-storing) and are often dwarfed and woody, and annuals or ephemerals, which have a short life cycle and may form a fairly dense stand immediately after rain.

  The ephemeral plants evade drought. Given a year of favorable precipitation, such plants will develop vigorously and produce large numbers of flowers and fruit. This replenishes the seed content of the desert soil. The seeds then lie dormant until the next wet year, when the desert blooms again.

  The perennial vegetation adjusts to the aridity by means of various avoidance mechanisms. Most desert plants are probably best classified as xerophytes. They possess drought-resisting adaptations: loss of water through the leaves is reduced by means of dense hairs covering waxy leaf surfaces, by the closure of pores during the hottest times to reduce water loss, and by the rolling up or shedding of leaves at the beginning of the dry season. Some xerophytes, the succulents (including cacti), store water in their structures. Another way of countering drought is to have a limited amount of mass above ground and to have extensive root networks below ground. It is not unusual for the roots of some desert perennials to extend downward more than ten meters. Some plants are woody in type —an adaptation designed to prevent collapse of the plant tissue when water stress produces wilting. Another class of desert plant is the phreatophyte. These have adapted to the environment by the development of long taproots that penetrate downward until they approach the assured water supply provided by groundwater. Among these plants are the date palm, tamarisk, and mesquite. They commonly grow near stream channels, springs, or on the margins of lakes.

  Animals also have to adapt to desert conditions, and they may do it through two forms of behavioral adaptation: they either escape or retreat. Escape involves such actions as aestivation, a condition of prolonged dormancy, or torpor, during which animals reduce their metabolic rate and body temperature during the hot season or during very dry spells.

  Seasonal migration is another form of escape, especially for large mammals or birds. The term retreat is applied to the short-term escape behavior of desert animals, and it usually assumes the pattern of a daily rhythm. Birds shelter in nests, rock overhangs, trees, and dense shrubs to avoid the hottest hours of the day, while mammals like the kangaroo rat burrow underground.

  Some animals have behavioral, physiological, and morphological (structural) adaptations that enable them to withstand extreme conditions. For example, the ostrich has plumage that is so constructed that the feathers are long but not too dense. When conditions are hot, the ostrich erects them on its back, thus increasing the thickness of the barrier between solar radiation and the skin. The sparse distribution of the feathers, however, also allows considerable lateral air movement over the skin surface, thereby permitting further heat loss by convection. Furthermore, the birds orient themselves carefully with regard to the Sun and gently flap their wings to increase convection cooling.

  Passage two

  学科分类:历史学

  题目:罗马帝国的扩张有关

  内容回忆:

  讨论罗马帝国扩张的过程中的优势和方式,主要依靠的是货币和贸易相关的政策,才使得帝国形成,具体是通过合并部落聚集成城市,在罗马帝国的扩展过程中并不是依靠技术的

  参考阅读:The Rise of Teotihuacán

  The city of Teotihuacán, which lay about 50 kilometers northeast of modern-day Mexico City, began its growth by 200-100 B.C. At its height, between about A.D. 150 and 700, it probably had a population of more than 125,000 people and covered at least 20 square kilometers. It had over 2,000 apartment complexes, a great market, a large number of industrial workshops, an administrative center, a number of massive religious edifices, and a regular grid pattern of streets and buildings. Clearly, much planning and central control were involved in the expansion and ordering of this great metropolis. Moreover, the city had economic and perhaps religious contacts with most parts of Mesoamerica (modern Central America and Mexico).

  How did this tremendous development take place, and why did it happen in the Teotihuacán Valley? Among the main factors are Teotihuacán’s geographic location on a natural trade route to the south and east of the Valley of Mexico, the obsidian resources in the Teotihuacán Valley itself, and the valley’s potential for extensive irrigation. The exact role of other factors is much more difficult to pinpoint―for instance, Teotihuacán’s religious significance as a shrine, the historical situation in and around the Valley of Mexico toward the end of the first millennium B.C., the ingenuity and foresightedness of Teotihuacán’s elite, and, finally, the impact of natural disasters, such as the volcanic eruptions of the late first millennium B.C.

  This last factor is at least circumstantially implicated in Teotihuacán’s rise. Prior to 200 B.C., a number of relatively small centers coexisted in and near the Valley of Mexico. Around this time, the largest of these centers, Cuicuilco, was seriously affected by a volcanic eruption, with much of its agricultural land covered by lava. With Cuicuilco eliminated as a potential rival, any one of a number of relatively modest towns might have emerged as a leading economic and political power in Central Mexico. The archaeological evidence clearly indicates, though, that Teotihuacán was the center that did arise as the predominant force in the area by the first century A.D.

  It seems likely that Teotihuacán’s natural resources, along with the city elite’s ability to recognize their potential, gave the city a competitive edge over its neighbors. The valley, like many other places in Mexican and Guatemalan highlands, was rich in obsidian. The hard volcanic stone was a resource that had been in great demand for many years, at least since the rise of the Olmecs (a people who flourished between 1200 and 400 B.C.), and it apparently had a secure market. Moreover, recent research on obsidian tools found at Olmec sites has shown that some of the obsidian obtained by the Olmecs originated near Teotihuacán. Teotihuacán obsidian must have been recognized as a valuable commodity for many centuries before the great city arose.

  Long-distance trade in obsidian probably gave the elite residents of Teotihuacán access to a wide variety of exotic good, as well as a relatively prosperous life. Such success may have attracted immigrants to Teotihuacán. In addition, Teotihuacán’s elite may have consciously attempted to attract new inhabitants. It is also probable that as early as 200 B.C. Teotihuacán may have achieved some religious significance and its shrine (or shrines) may have served as an additional population magnet. Finally, the growing population was probably fed by increasing the number and size of irrigated fields.

  The picture of Teotihuacán that emerges is a classic picture of positive feedback among obsidian mining and working, trade, population growth, irrigation, and religious tourism. The thriving obsidian operation, for example, would necessitate more miners, additional manufacturers of obsidian tools, and additional traders to carry the goods to new markets. All this led to increased wealth, which in turn would attract more immigrants to Teotihuacán. The growing power of the elite, who controlled the economy, would give them the means to physically coerce people to move to Teotihuacán and serve as additions to the labor force. More irrigation works would have to be built to feed the growing population, and this resulted in more power and wealth for the elite.

  Passage three

  学科分类:生物学

  题目:进化论有关

  内容回忆:讨论了一个进化论的反例,在进化论中,鸟类的喙的进化,是为了适应吃不同的食物,尽管这些鸟类的祖先是同一个,但是为了适应,后来鸟类的嘴进化成不同的样子,但是,一个科学家观察到了反例。

  参考阅读:Begging by Nestlings

  Many signals that animals make seem to impose on the signalers costs that are overly damaging. A classic example is noisy begging by nestling songbirds when a parent returns to the nest with food. These loud cheeps and peeps might give the location of the nest away to a listening hawk or raccoon, resulting in the death of the defenseless nestlings. In fact, when tapes of begging tree swallows were played at an artificial swallow nest containing an egg, the egg in that “noisy” nest was taken or destroyed by predators before the egg in a nearby quiet nest in 29 of 37 trials.

  Further evidence for the costs of begging comes from a study of differences in the begging calls of warbler species that nest on the ground versus those that nest in the relative safety of trees. The young of ground-nesting warblers produce begging cheeps of higher frequencies than do their tree-nesting relatives. These higher-frequency sounds do not travel as far, and so may better conceal the individuals producing them, who are especially vulnerable to predators in their ground nests. David Haskell created artificial nests with clay eggs and placed them on the ground beside a tape recorder that played the begging calls of either tree-nesting or of ground-nesting warblers. The eggs “advertised” by the tree-nesters' begging calls were found bitten significantly more often than the eggs associated with the ground-nesters' calls.

  The hypothesis that begging calls have evolved properties that reduce their potential for attracting predators yields a prediction: baby birds of species that experience high rates of nest predation should produce softer begging signals of higher frequency than nestlings of other species less often victimized by nest predators. This prediction was supported by data collected in one survey of 24 species from an Arizona forest, more evidence that predator pressure favors the evolution of begging calls that are hard to detect and pinpoint.

  Given that predators can make it costly to beg for food, what benefit do begging nestlings derive from their communications? One possibility is that a noisy baby bird provides accurate signals of its real hunger and good health, making it worthwhile for the listening parent to give it food in a nest where several other offspring are usually available to be fed. If this hypothesis is true, then it follows that nestlings should adjust the intensity of their signals in relation to the signals produced by their nestmates, who are competing for parental attention. When experimentally deprived baby robins are placed in a nest with normally fed siblings, the hungry nestlings beg more loudly than usual—but so do their better-fed siblings, though not as loudly as the hungrier birds.

  If parent birds use begging intensity to direct food to healthy offspring capable of vigorous begging, then parents should make food delivery decisions on the basis of their offsprings’ calls. Indeed, if you take baby tree swallows out of a nest for an hour feeding half the set and starving the other half, when the birds are replaced in the nest, the starved youngsters beg more loudly than the fed birds, and the parent birds feed the active beggars more than those who beg less vigorously.

  As these experiments show, begging apparently provides a signal of need that parents use to make judgments about which offspring can benefit most from a feeding. But the question arises, why don't nestlings beg loudly when they aren't all that hungry? By doing so, they could possibly secure more food, which should result in more rapid growth or larger size, either of which is advantageous. The answer lies apparently not in the increased energy costs of exaggerated begging—such energy costs are small relative to the potential gain in calories—but rather in the damage that any successful cheater would do to its siblings, which share genes with one another. An individual's success in propagating his or her genes can be affected by more than just his or her own personal reproductive success. Because close relatives have many of the same genes, animals that harm their close relatives may in effect be destroying some of their own genes. Therefore, a begging nestling that secures food at the expense of its siblings might actually leave behind fewer copies of its genes overall than it might otherwise.

  Passage four

  学科分类:动物学

  题目:一种草原动物相关

  内容回忆:

  草原动物内部职责的分配和形成这种分配形式的猜想,讨论了若干种情形,包括作为惩罚,选亲缘关系,但都是为了群体大家生存产生的。

  参考阅读:Feeding Habits of East African Herbivores

  Buffalo, zebras, wildebeests, topi, and Thomson’s gazelles live in huge groups that together make up some 90 percent of the total weight of mammals living on the Serengeti Plain of East Africa. They are all herbivores (plant-eating animals), and they all appear to be living on the same diet of grasses, herbs, and small bushes. This appearance, however, is illusory. When biologist Richard Bell and his colleagues analyzed the stomach contents of four of the five species (they did not study buffalo), they found that each species was living on a different part of the vegetation. The different vegetational parts differ in their food qualities: lower down, there are succulent, nutritious leaves; higher up are the harder stems. There are also sparsely distributed, highly nutritious fruits, and Bell found that only the Thomson’s gazelles eat much of these. The other three species differ in the proportion of lower leaves and higher stems that they eat: zebras eat the most stem matter, wildebeests eat the most leaves, and topi are intermediate.

  How are we to understand their different feeding preferences? The answer lies in two associated differences among the species, in their digestive systems and body sizes. According to their digestive systems, these herbivores can be divided into two categories: the nonruminants (such as the zebra, which has a digestive system like a horse) and the ruminants (such as the wildebeest, topi, and gazelle, which are like the cow). Nonruminants cannot extract much energy from the hard parts of a plant; however, this is more than made up for by the fast speed at which food passes through their guts. Thus, when there is only a short supply of poor-quality food, the wildebeest, topi, and gazelle enjoy an advantage. They are ruminants and have a special structure (the rumen) in their stomachs, which contains microorganisms that can break down the hard parts of plants. Food passes only slowly through the ruminant’s gut because ruminating—digesting the hard parts—takes time. The ruminant continually regurgitates food from its stomach back to its mouth to chew it up further (that is what a cow is doing when “chewing cud”). Only when it has been chewed up and digested almost to a liquid can the food pass through the rumen and on through the gut. Larger particles cannot pass through until they have been chewed down to size. Therefore, when food is in short supply, a ruminant can last longer than a nonruminant because it can derive more energy out of the same food. The difference can partially explain the eating habits of the Serengeti herbivores. The zebra chooses areas where there is more low-quality food. It migrates first to unexploited areas and chomps the abundant low-quality stems before moving on. It is a fast-in/fast-out feeder, relying on a high output of incompletely digested food. By the time the wildebeests (and other ruminants) arrive, the grazing and trampling of the zebras will have worn the vegetation down. As the ruminants then set to work, they eat down to the lower, leafier parts of the vegetation. All of this fits in with the differences in stomach contents with which we began.

  The other part of the explanation is body size. Larger animals require more food than smaller animals, but smaller animals have a higher metabolic rate. Smaller animals can therefore live where there is less food, provided that such food is of high energy content. That is why the smallest of the herbivores, Thomson’s gazelle, lives on fruit that is very nutritious but too thin on the ground to support a larger animal. By contrast, the large zebra lives on the masses of low-quality stem material.

  The differences in feeding preferences lead, in turn, to differences in migratory habits. The wildebeests follow, in their migration, the pattern of local rainfall. The other species do likewise. But when a new area is fueled by rain, the mammals migrate toward it in a set order to exploit it. The larger, less fastidious feeders, the zebras, move in first; the choosier, smaller wildebeests come later; and the smallest species of all, Thomson’s gazelle, arrives last. The later species all depend on the preparations of the earlier one, for the actions of the zebra alter the vegetation to suit the stomachs of the wildebeest, topi, and gazelle.

  Passage five

  学科分类:艺术学

  题目:威尼斯的艺术相关

  内容回忆:介绍水城威尼斯的特有的文化,此外,也讨论了原因。

  参考阅读:Applied Arts and Fine Arts

  Although we now tend to refer to the various crafts according to the materials used to construct them—clay, glass, wood, fiber, and metal—it was once common to think of crafts in terms of function, which led to their being known as the "applied arts." Approaching crafts from the point of view of function, we can divide them into simple categories: containers, shelters and supports. There is no way around the fact that containers, shelters, and supports must be functional. The applied arts are thus bound by the laws of physics, which pertain to both the materials used in their making and the substances and things to be contained, supported, and sheltered. These laws are universal in their application, regardless of cultural beliefs, geography, or climate. If a pot has no bottom or has large openings in its sides, it could hardly be considered a container in any traditional sense. Since the laws of physics, not some arbitrary decision, have determined the general form of applied-art objects, they follow basic patterns, so much so that functional forms can vary only within certain limits. Buildings without roofs, for example, are unusual because they depart from the norm. However, not all functional objects are exactly alike; that is why we recognize a Shang Dynasty vase as being different from an Inca vase. What varies is not the basic form but the incidental details that do not obstruct the object's primary function.

  Sensitivity to physical laws is thus an important consideration for the maker of applied-art objects. It is often taken for granted that this is also true for the maker of fine-art objects. This assumption misses a significant difference between the two disciplines. Fine-art objects are not constrained by the laws of physics in the same way that applied-art objects are. Because their primary purpose is not functional, they are only limited in terms of the materials used to make them. Sculptures must, for example, be stable, which requires an understanding of the properties of mass, weight distribution, and stress. Paintings must have rigid stretchers so that the canvas will be taut, and the paint must not deteriorate, crack, or discolor. These are problems that must be overcome by the artist because they tend to intrude upon his or her conception of the work. For example, in the early Italian Renaissance, bronze statues of horses with a raised foreleg usually had a cannonball under that hoof. This was done because the cannonball was needed to support the weight of the leg. In other words, the demands of the laws of physics, not the sculptor's aesthetic intentions, placed the ball there. That this device was a necessary structural compromise is clear from the fact that the cannonball quickly disappeared when sculptors learned how to strengthen the internal structure of a statue with iron braces (iron being much stronger than bronze).

  Even though the fine arts in the twentieth century often treat materials in new ways, the basic difference in attitude of artists in relation to their materials in the fine arts and the applied arts remains relatively constant. It would therefore not be too great an exaggeration to say that practitioners of the fine arts work to overcome the limitations of their materials, whereas those engaged in the applied arts work in concert with their materials.

  Passage six

  学科分类:历史学

  题目:蛇相关

  内容回忆:讨论了外来物种的入侵对当地的影响,二战期间,有一个地方,受到外来蛇的入侵,结果,后来这个地方原本的生物都灭绝了,只剩下外来的品种

  参考阅读:Artisans and Industrialization

  Before 1815 manufacturing in the United States had been done in homes or shops by skilled artisans. As master craft workers, they imparted the knowledge of their trades to apprentices and journeymen. In addition, women often worked in their homes part-time, making finished articles from raw material supplied by merchant capitalists. After 1815 this older form of manufacturing began to give way to factories with machinery tended by unskilled or semiskilled laborers. Cheap transportation networks, the rise of cities, and the availability of capital and credit all stimulated the shift to factory production.

  The creation of a labor force that was accustomed to working in factories did not occur easily. Before the rise of the factory, artisans had worked within the home. Apprentices were considered part of the family, and masters were responsible not only for teaching their apprentices a trade but also for providing them some education and for supervising their moral behavior. Journeymen knew that if they perfected their skill, they could become respected master artisans with their own shops. Also, skilled artisans did not work by the clock, at a steady pace, but rather in bursts of intense labor alternating with more leisurely time.

  The factory changed that. Goods produced by factories were not as finished or elegant as those done by hand, and pride in craftsmanship gave way to the pressure to increase rates of productivity. The new methods of doing business involved a new and stricter sense of time. Factory life necessitated a more regimented schedule, where work began at the sound of a bell and workers kept machines going at a constant pace. At the same time, workers were required to discard old habits, for industrialism demanded a worker who was alert, dependable, and self-disciplined. Absenteeism and lateness hurt productivity and, since work was specialized, disrupted the regular factory routine. Industrialization not only produced a fundamental change in the way work was organized; it transformed the very nature of work.

  The first generation to experience these changes did not adopt the new attitudes easily. The factory clock became the symbol of the new work rules. One mill worker who finally quit complained revealingly about "obedience to the ding-dong of the bell-just as though we are so many living machines." With the loss of personal freedom also came the loss of standing in the community. Unlike artisan workshops in which apprentices worked closely with the masters supervising them, factories sharply separated workers from management. Few workers rose through the ranks to supervisory positions, and even fewer could achieve the artisan's dream of setting up one's own business. Even well-paid workers sensed their decline in status.

  In this newly emerging economic order, workers sometimes organized to protect their rights and traditional ways of life. Craft workers such as carpenters, printers, and tailors formed unions, and in 1834 individual unions came together in the National Trades' Union. The labor movement gathered some momentum in the decade before the Panic of 1837, but in the depression that followed, labor's strength collapsed. During hard times, few workers were willing to strike* or engage in collective action. And skilled craft workers, who spearheaded the union movement, did not feel a particularly strong bond with semiskilled factory workers and unskilled laborers. More than a decade of agitation did finally bring a workday shortened to 10 hours to most industries by the 1850’s, and the courts also recognized workers' right to strike, but these gains had little immediate impact.

  Workers were united in resenting the industrial system and their loss of status, but they were divided by ethnic and racial antagonisms, gender, conflicting religious perspectives, occupational differences, political party loyalties, and disagreements over tactics. For them, the factory and industrialism were not agents of opportunity but reminders of their loss of independence and a measure of control over their lives. As United States society became more specialized and differentiated, greater extremes of wealth began to appear. And as the new markets created fortunes for the few, the factory system lowered the wages of workers by dividing labor into smaller, less skilled tasks.

  Passage seven

  学科分类:人类学

  题目:养马有关

  内容回忆:在欧洲的农业用具的发展,导致了养马的盛行,后来它们取代了牛,越来越受到重视

  参考阅读:The Origin of the Pacific Island People

  The greater Pacific region, traditionally called Oceania, consists of three cultural areas: Melanesia, Micronesia, and Polynesia. Melanesia, in the southwest Pacific, contains the large islands of New Guinea, the Solomons, Vanuatu, and New Caledonia. Micronesia, the area north of Melanesia, consists primarily of small scattered islands. Polynesia is the central Pacific area in the great triangle defined by Hawaii, Easter Island, and New Zealand. Before the arrival of Europeans, the islands in the two largest cultural areas, Polynesia and Micronesia, together contained a population estimated at 700,000.

  Speculation on the origin of these Pacific islanders began as soon as outsiders encountered them, in the absence of solid linguistic, archaeological, and biological data, many fanciful and mutually exclusive theories were devised. Pacific islanders are variously thought to have come from North America, South America, Egypt, Israel, and India, as well as Southeast Asia. Many older theories implicitly deprecated the navigational abilities and overall cultural creativity of the Pacific islanders. For example, British anthropologists G. Elliot Smith and W. J. Perry assumed that only Egyptians would have been skilled enough to navigate and colonize the Pacific. They inferred that the Egyptians even crossed the Pacific to found the great civilizations of the New World (North and South America). In 1947 Norwegian adventurer Thor Heyerdahl drifted on a balsa-log raft westward with the winds and currents across the Pacific from South America to prove his theory that Pacific islanders were Native Americans (also called American Indians). Later Heyerdahl suggested that the Pacific was peopled by three migrations: by Native Americans from the Pacific Northwest of North America drifting to Hawaii, by Peruvians drifting to Easter Island, and by Melanesians. In 1969 he crossed the Atlantic in an Egyptian-style reed boat to prove Egyptian influences in the Americas. Contrary to these theorists, the overwhelming evidence of physical anthropology, linguistics, and archaeology shows that the Pacific islanders came from Southeast Asia and were skilled enough as navigators to sail against the prevailing winds and currents.

  The basic cultural requirements for the successful colonization of the Pacific islands include the appropriate boat-building, sailing, and navigation skills to get to the islands in the first place, domesticated plants and gardening skills suited to often marginal conditions, and a varied inventory of fishing implements and techniques. It is now generally believed that these prerequisites originated with peoples speaking Austronesian languages (a group of several hundred related languages) and began to emerge in Southeast Asia by about 5000 B.C.E. The culture of that time, based on archaeology and linguistic reconstruction, is assumed to have had a broad inventory of cultivated plants including taro, yarns, banana, sugarcane, breadfruit, coconut, sago, and rice. Just as important, the culture also possessed the basic foundation for an effective maritime adaptation, including outrigger canoes and a variety of fishing techniques that could be effective for overseas voyaging.

  Contrary to the arguments of some that much of the pacific was settled by Polynesians accidentally marooned after being lost and adrift, it seems reasonable that this feat was accomplished by deliberate colonization expeditions that set out fully stocked with food and domesticated plants and animals. Detailed studies of the winds and currents using computer simulations suggest that drifting canoes would have been a most unlikely means of colonizing the Pacific. These expeditions were likely driven by population growth and political dynamics on the home islands, as well as the challenge and excitement of exploring unknown waters.

  Because all Polynesians, Micronesians, and many Melanesians speak Austronesian languages and grow crops derived from Southeast Asia, all these peoples most certainly derived from that region and not the New World or elsewhere. The undisputed pre-Columbian presence in Oceania of the sweet potato, which is a New World domesticate, has sometimes been used to support Heyerdahl’s “American Indians in the Pacific” theories. However, this is one plant out of a long list of Southeast Asian domesticates. As Patrick Kirch, an American anthropologist, points out, rather than being brought by rafting South Americans, sweet potatoes might just have easily been brought back by returning Polynesian navigators who could have reached the west coast of South America.

  Passage eight

  学科分类:人类学

  题目:务农有关

  内容回忆:讨论了新英格兰的农业相关的的情况

  参考阅读:Early Settlements in the Southwest Asia

  The universal global warming at the end of the Ice Age had dramatic effects on temperate regions of Asia, Europe, and North America. Ice sheets retreated and sea levels rose. The climatic changes in southwestern Asia were more subtle, in that they involved shifts in mountain snow lines, rainfall patterns, and vegetation cover. However, these same cycles of change had momentous impacts on the sparse human populations of the region. At the end of the Ice Age, no more than a few thousand foragers lived along the eastern Mediterranean coast, in the Jordan and Euphrates valleys. Within 2,000 years, the human population of the region numbered in the tens of thousands, all as a result of village life and farming. Thanks to new environmental and archaeological discoveries, we now know something about this remarkable change in local life.

  Pollen samples from freshwater lakes in Syria and elsewhere tell us forest cover expanded rapidly at the end of the Ice Age, for the southwestern Asian climate was still cooler and considerably wetter than today. Many areas were richer in animal and plant species than they are now, making them highly favorable for human occupation. About 9000 B.C., most human settlements lay in the area along the Mediterranean coast and in the Zagros Mountains of Iran and their foothills. Some local areas, like the Jordan River valley, the middle Euphrates valley, and some Zagros valleys, were more densely populated than elsewhere. Here more sedentary and more complex societies flourished. These people exploited the landscape intensively, foraging on hill slopes for wild cereal grasses and nuts, while hunting gazelle and other game on grassy lowlands and in river valleys. Their settlements contain exotic objects such as seashells, stone bowls, and artifacts made of obsidian (volcanic glass), all traded from afar. This considerable volume of intercommunity exchange brought a degree of social complexity in its wake.

  Thanks to extremely fine-grained excavation and extensive use of flotation methods (through which seeds are recovered from soil samples), we know a great deal about the foraging practices of the inhabitants of Abu Hureyra in Syria's Euphrates valley. Abu Hureyra was founded about 9500B.C, a small village settlement of cramped pit dwellings (houses dug partially in the soil) with reed roofs supported by wooden uprights. For the next 1,500 years, its inhabitants enjoyed a somewhat warmer and damper climate than today, living in a well-wooded steppe area where wild cereal grasses were abundant. They subsisted off spring migrations of Persian gazelles from the south. With such a favorable location, about 300 to 400 people lived in a sizable, permanent settlement. They were no longer a series of small bands but lived in a large community with more elaborate social organization, probably grouped into clans of people of common descent.

  The flotation samples from the excavations allowed botanists to study shifts in plant-collecting habits as if they were looking through a telescope at a changing landscape. Hundreds of tiny plant remains show how the inhabitants exploited nut harvests in nearby pistachio and oak forests. However, as the climate dried up, the forests retreated from the vicinity of the settlement. The inhabitants turned to wild cereal grasses instead, collecting them by the thousands, while the percentage of nuts in the diet fell. By 8200B.C., drought conditions were so severe that the people abandoned their long-established settlement, perhaps dispersing into smaller camps.

  Five centuries later, about 7700B.C., a new village rose on the mound. At first the inhabitants still hunted gazelle intensively. Then, about 7000 B.C., within the space of a few generations, they switched abruptly to herding domesticated goats and sheep and to growing einkorn, pulses, and other cereal grasses. Abu Hureyra grew rapidly until it covered nearly 30 acres. It was a close-knit community of rectangular, one-story mud-brick houses, joined by narrow lanes and courtyards, finally abandoned about 5000 B.C.. Many complex factors led to the adoption of the new economies, not only at Abu Hureyra, but at many other locations such as 'Ain Ghazal, also in Syria, where goat toe bones showing the telltale marks of abrasion caused by foot tethering (binding) testify to early herding of domestic stock.ly Settlements in the Southwest Asia

  Passage nine

  学科分类:动物学

  题目:龟相关的文章

  内容回忆:讨论了乌龟保暖的方式,其中包括了不同种类的乌龟和多种不同的方式

  参考阅读:Deer Populations of the Puget Sound

  Two species of deer have been prevalent in the Puget Sound area of Washington State in the Pacific Northwest of the United States. The black-tailed deer, a lowland, west-side cousin of the mule deer of eastern Washington, is now the most common. The other species, the Columbian white-tailed deer, in earlier times was common in the open prairie country; it is now restricted to the low, marshy islands and flood plains along the lower Columbia River.

  Nearly any kind of plant of the forest understory can be part of a deer's diet. Where the forest inhibits the growth of grass and other meadow plants, the black-tailed deer browses on huckleberry, salal, dogwood, and almost any other shrub or herb. But this is fair-weather feeding. What keeps the black-tailed deer alive in the harsher seasons of plant decay and dormancy? One compensation for not hibernating is the built-in urge to migrate. Deer may move from high-elevation browse areas in summer down to the lowland areas in late fall. Even with snow on the ground, the high bushy understory is exposed; also snow and wind bring down leafy branches of cedar, hemlock, red alder, and other arboreal fodder.

  The numbers of deer have fluctuated markedly since the entry of Europeans into Puget Sound country. The early explorers and settlers told of abundant deer in the early 1800s and yet almost in the same breath bemoaned the lack of this succulent game animal. Famous explorers of the north American frontier, Lewis and Clark arrived at the mouth of the Columbia River on November 14, 1805, in nearly starved circumstances. They had experienced great difficulty finding game west of the Rockies and not until the second of December did they kill their first elk. To keep 40 people alive that winter, they consumed approximately 150 elk and 20 deer. And when game moved out of the lowlands in early spring, the expedition decided to return east rather than face possible starvation. Later on in the early years of the nineteenth century, when Fort Vancouver became the headquarters of the Hudson's Bay Company, deer populations continued to fluctuate. David Douglas, Scottish botanical explorer of the 1830s, found a disturbing change in the animal life around the fort during the period between his first visit in 1825 and his final contact with the fort in 1832. A recent Douglas biographer states:" The deer which once picturesquely dotted the meadows around the fort were gone [in 1832], hunted to extermination in order to protect the crops."

  Reduction in numbers of game should have boded ill for their survival in later times. A worsening of the plight of deer was to be expected as settlers encroached on the land, logging, burning, and clearing, eventually replacing a wilderness landscape with roads, cities, towns, and factories. No doubt the numbers of deer declined still further. Recall the fate of the Columbian white-tailed deer, now in a protected status. But for the black-tailed deer, human pressure has had just the opposite effect. Wildlife zoologist Helmut Buechner(1953), in reviewing the nature of biotic changes in Washington through recorded time, says that "since the early 1940s, the state has had more deer than at any other time in its history, the winter population fluctuating around approximately 320,000 deer (mule and black-tailed deer), which will yield about 65,000 of either sex and any age annually for an indefinite period."

  The causes of this population rebound are consequences of other human actions. First, the major predators of deer—wolves, cougar, and lynx—have been greatly reduced in numbers. Second, conservation has been insured by limiting times for and types of hunting. But the most profound reason for the restoration of high population numbers has been the fate of the forests. Great tracts of lowland country deforested by logging, fire, or both have become ideal feeding grounds of deer. In addition to finding an increase of suitable browse, like huckleberry and vine maple, Arthur Einarsen, longtime game biologist in the Pacific Northwest, found quality of browse in the open areas to be substantially more nutritive. The protein content of shade-grown vegetation, for example, was much lower than that for plants grown in clearings.

  Passage ten

  学科分类:环境学

  题目:砍树相关的文章

  内容回忆:讨论了不能随意砍树,讨论了乱砍树可能会导致恶果

  参考阅读:Desert Formation

  The deserts, which already occupy approximately a fourth of the Earth's land surface, have in recent decades been increasing at an alarming pace. The expansion of desert-like conditions into areas where they did not previously exist is called desertification. It has been estimated that an additional one-fourth of the Earth's land surface is threatened by this process.

  Desertification is accomplished primarily through the loss of stabilizing natural vegetation and the subsequent accelerated erosion of the soil by wind and water. In some cases the loose soil is blown completely away, leaving a stony surface. In other cases, the finer particles may be removed, while the sand-sized particles are accumulated to form mobile hills or ridges of sand.

  Even in the areas that retain a soil cover, the reduction of vegetation typically results in the loss of the soil's ability to absorb substantial quantities of water. The impact of raindrops on the loose soil tends to transfer fine clay particles into the tiniest soil spaces, sealing them and producing a surface that allows very little water penetration. Water absorption is greatly reduced; consequently runoff is increased, resulting in accelerated erosion rates. The gradual drying of the soil caused by its diminished ability to absorb water results in the further loss of vegetation, so that a cycle of progressive surface deterioration is established.

  In some regions, the increase in desert areas is occurring largely as the result of a trend toward drier climatic conditions. Continued gradual global warming has produced an increase in aridity for some areas over the past few thousand years. The process may be accelerated in subsequent decades if global warming resulting from air pollution seriously increases.

  There is little doubt, however, that desertification in most areas results primarily from human activities rather than natural processes. The semiarid lands bordering the deserts exist in a delicate ecological balance and are limited in their potential to adjust to increased environmental pressures. Expanding populations are subjecting the land to increasing pressures to provide them with food and fuel. In wet periods, the land may be able to respond to these stresses. During the dry periods that are common phenomena along the desert margins, though, the pressure on the land is often far in excess of its diminished capacity, and desertification results.

  Four specific activities have been identified as major contributors to the desertification processes: overcultivation, overgrazing, firewood gathering, and overirrigation. The cultivation of crops has expanded into progressively drier regions as population densities have grown. These regions are especially likely to have periods of severe dryness, so that crop failures are common. Since the raising of most crops necessitates the prior removal of the natural vegetation, crop failures leave extensive tracts of land devoid of a plant cover and susceptible to wind and water erosion.

  The raising of livestock is a major economic activity in semiarid lands, where grasses are generally the dominant type of natural vegetation. The consequences of an excessive number of livestock grazing in an area are the reduction of the vegetation cover and the trampling and pulverization of the soil. This is usually followed by the drying of the soil and accelerated erosion.

  Firewood is the chief fuel used for cooking and heating in many countries. The increased pressures of expanding populations have led to the removal of woody plants so that many cities and towns are surrounded by large areas completely lacking in trees and shrubs. The increasing use of dried animal waste as a substitute fuel has also hurt the soil because this valuable soil conditioner and source of plant nutrients is no longer being returned to the land.

  The final major human cause of desertification is soil salinization resulting from overirrigation. Excess water from irrigation sinks down into the water table. If no drainage system exists, the water table rises, bringing dissolved salts to the surface. The water evaporates and the salts are left behind, creating a white crustal layer that prevents air and water from reaching the underlying soil.

  The extreme seriousness of desertification results from the vast areas of land and the tremendous numbers of people affected, as well as from the great difficulty of reversing or even slowing the process. Once the soil has been removed by erosion, only the passage of centuries or millennia will enable new soil to form. In areas where considerable soil still remains, though, a rigorously enforced program of land protection and cover-crop planting may make it possible to reverse the present deterioration of the surface.

  Passage eleven

  学科分类:心理学

  题目:感官相关文章

  内容回忆:讨论了人的感官研究方面的新的发展,人的感官本来认为刺激的强度对于这方面研究是比较重要的,但是,还有噪声也会造成影响。

  参考阅读:The Expression of Emotions

  Joy and sadness are experienced by people in all cultures around the world, but how can we tell when other people are happy or despondent? It turns out that the expression of many emotions may be universal. Smiling is apparently a universal sign of friendliness and approval. Baring the teeth in a hostile way, as noted by Charles Darwin in the nineteenth century, may be a universal sign of anger. As the originator of the theory of evolution, Darwin believed that the universal recognition of facial expressions would have survival value. For example, facial expressions could signal the approach of enemies (or friends) in the absence of language.

  Most investigators concur that certain facial expressions suggest the same emotions in all people. Moreover, people in diverse cultures recognize the emotions manifested by the facial expressions. In classic research Paul Ekman took photographs of people exhibiting the emotions of anger, disgust, fear, happiness, and sadness. He then asked people around the world to indicate what emotions were being depicted in them. Those queried ranged from European college students to members of the Fore, a tribe that dwells in the New Guinea highlands. All groups, including the Fore, who had almost no contact with Western culture, agreed on the portrayed emotions. The Fore also displayed familiar facial expressions when asked how they would respond if they were the characters in stories that called for basic emotional responses. Ekman and his colleagues more recently obtained similar results in a study of ten cultures in which participants were permitted to report that multiple emotions were shown by facial expressions. The participants generally agreed on which two emotions were being shown and which emotion was more intense.

  Psychological researchers generally recognize that facial expressions reflect emotional states. In fact, various emotional states give rise to certain patterns of electrical activity in the facial muscles and in the brain. The facial-feedback hypothesis argues, however, that the causal relationship between emotions and facial expressions can also work in the opposite direction. According to this hypothesis, signals from the facial muscles ("feedback") are sent back to emotion centers of the brain, and so a person's facial expression can influence that person's emotional state. Consider Darwin's words: "The free expression by outward signs of an emotion intensifies it. On the other hand, the repression, as far as possible, of all outward signs softens our emotions." Can smiling give rise to feelings of good will, for example, and frowning to anger?

  Psychological research has given rise to some interesting findings concerning the facial-feedback hypothesis. Causing participants in experiments to smile, for example, leads them to report more positive feelings and to rate cartoons (humorous drawings of people or situations) as being more humorous. When they are caused to frown, they rate cartoons as being more aggressive.

  What are the possible links between facial expressions and emotion? One link is arousal, which is the level of activity or preparedness for activity in an organism. Intense contraction of facial muscles, such as those used in signifying fear, heightens arousal. Self-perception of heightened arousal then leads to heightened emotional activity. Other links may involve changes in brain temperature and the release of neurotransmitters (substances that transmit nerve impulses.) The contraction of facial muscles both influences the internal emotional state and reflects it. Ekman has found that the so-called Duchenne smile, which is characterized by ''crow’s feet" wrinkles around the eyes and a subtle drop in the eye cover fold so that the skin above the eye moves down slightly toward the eyeball, can lead to pleasant feelings.

  Ekman’s observation may be relevant to the British expression “keep a stiff upper lip” as a recommendation for handling stress. It might be that a “stiff” lip suppresses emotional response—as long as the lip is not quivering with fear or tension. But when the emotion that leads to stiffening the lip is more intense, and involves strong muscle tension, facial feedback may heighten emotional response.

  Passage twelve

  学科分类:人类学

  题目:印度农业相关的文章

  内容回忆:有一种现象叫做degradation,这会导致土地盐碱化,这个在热带的地方会出现,印度人想了一种方法来解决它。

  参考阅读:Powering the Industrial Revolution

  In Britain one of the most dramatic changes of the Industrial Revolution was the harnessing of power. Until the reign of George Ⅲ(1760-1820), available sources of power for work and travel had not increased since the Middle Ages. There were three sources of power: animal or human muscles; the wind, operating on sail or windmill; and running water. Only the last of these was suited at all to the continuous operating of machines, and although waterpower abounded in Lancashire and Scotland and ran grain mills as well as textile mills, it had one great disadvantage: streams flowed where nature intended them to, and water-driven factories had to be located on their banks whether or not the location was desirable for other reasons. Furthermore, even the most reliable waterpower varied with the seasons and disappeared in a drought. The new age of machinery, in short, could not have been born without a new source of both movable and constant power.

  The source had long been known but not exploited. Early in the eighteenth century, a pump had come into use in which expanding steam raised a piston in a cylinder, and atmospheric pressure brought it down again when the steam condensed inside the cylinder to form a vacuum. This “atmospheric engine,” invented by Thomas Savery and vastly improved by his partner, Thomas Newcomen, embodied revolutionary principles, but it was so slow and wasteful of fuel that it could not be employed outside the coal mines for which it had been designed. In the 1760s, James Watt perfected a separate condenser for the steam, so that the cylinder did not have to be cooled at every stroke; then he devised a way to make the piston turn a wheel and thus convert reciprocating (back and forth) motion into rotary motion. He thereby transformed an inefficient pump of limited use into a steam engine of a thousand uses. The final step came when steam was introduced into the cylinder to drive the piston backward as well as forward, thereby increasing the speed of the engine and cutting its fuel consumption.

  Watt's steam engine soon showed what it could do. It liberated industry from dependence on running water. The engine eliminated water in the mines by driving efficient pumps, which made possible deeper and deeper mining. The ready availability of coal inspired William Murdoch during the 1790s to develop the first new form of nighttime illumination to be discovered in a millennium and a half. Coal gas rivaled smoky oil lamps and flickering candles, and early in the new century, well-to-do Londoners grew accustomed to gaslit houses and even streets. Iron manufacturers, which had starved for fuel while depending on charcoal, also benefited from ever-increasing supplies of coal: blast furnaces with steam-powered bellows turned out more iron and steel for the new machinery. Steam became the motive force of the Industrial Revolution as coal and iron ore were the raw materials.

  By 1800 more than a thousand steam engines were in use in the British Isles, and Britain retained a virtual monopoly on steam engine production until the 1830s. Steam power did not merely spin cotton and roll iron; early in the new century, it also multiplied ten times over the amount of paper that a single worker could produce in a day. At the same time, operators of the first printing presses run by steam rather than by hand found it possible to produce a thousand pages in an hour rather than thirty. Steam also promised to eliminate a transportation problem not fully solved by either canal boats or turnpikes. Boats could carry heavy weights, but canals could not cross hilly terrain; turnpikes could cross the hills, but the roadbeds could not stand up under great weights. These problems needed still another solution, and the ingredients for it lay close at hand. In some industrial regions, heavily laden wagons, with flanged wheels, were being hauled by horses along metal rails; and the stationary steam engine was puffing in the factory and mine. Another generation passed before inventors succeeded in combining these ingredients, by putting the engine on wheels and the wheels on the rails, so as to provide a machine to take the place of the horse. Thus the railroad age sprang from what had already happened in the eighteenth century.

  Passage thirteen

  学科分类:历史学

  题目:日本的瓷器有关的文章

  内容回忆:讨论了日本瓷器的起源或者说是发展的原因,该国很久以前有瓷器,但是根据当时人的情况,学者不能理解为什么会有瓷器,有一种猜测,说是为了显示财富,这个猜想获得很多证据支持。

  参考阅读:Chinese Pottery

  China has one of the world's oldest continuous civilizations—despite invasions and occasional foreign rule. A country as vast as China with so long-lasting a civilization has a complex social and visual history, within which pottery and porcelain play a major role.

  The function and status of ceramics in China varied from dynasty to dynasty, so they may be utilitarian, burial, trade-collectors', or even ritual objects, according to their quality and the era in which they were made. The ceramics fall into three broad types—earthenware, stoneware, and porcelain—for vessels, architectural items such as roof tiles, and modeled objects and figures. In addition, there was an important group of sculptures made for religious use, the majority of which were produced in earthenware.

  The earliest ceramics were fired to earthenware temperatures, but as early as the fifteenth century B.C., high-temperature stonewares were being made with glazed surfaces. During the Six Dynasties period (AD 265-589), kilns in north China were producing high-fired ceramics of good quality. Whitewares produced in Hebei and Henan provinces from the seventh to the tenth centuries evolved into the highly prized porcelains of the Song dynasty (AD. 960-1279), long regarded as one of the high points in the history of China's ceramic industry. The tradition of religious sculpture extends over most historical periods but is less clearly delineated than that of stonewares or porcelains, for it embraces the old custom of earthenware burial ceramics with later religious images and architectural ornament. Ceramic products also include lead-glazed tomb models of the Han dynasty, three-color lead-glazed vessels and figures of the Tang dynasty, and Ming three-color temple ornaments, in which the motifs were outlined in a raised trail of slip—as well as the many burial ceramics produced in imitation of vessels made in materials of higher intrinsic value.

  Trade between the West and the settled and prosperous Chinese dynasties introduced new forms and different technologies. One of the most far-reaching examples is the impact of the fine ninth-century AD. Chinese porcelain wares imported into the Arab world. So admired were these pieces that they encouraged the development of earthenware made in imitation of porcelain and instigated research into the method of their manufacture. From the Middle East the Chinese acquired a blue pigment—a purified form of cobalt oxide unobtainable at that time in China—that contained only a low level of manganese. Cobalt ores found in China have a high manganese content, which produces a more muted blue-gray color. In the seventeenth century, the trading activities of the Dutch East India Company resulted in vast quantities of decorated Chinese porcelain being brought to Europe, which stimulated and influenced the work of a wide variety of wares, notably Delft. The Chinese themselves adapted many specific vessel forms from the West, such as bottles with long spouts, and designed a range of decorative patterns especially for the European market.

  Just as painted designs on Greek pots may seem today to be purely decorative, whereas in fact they were carefully and precisely worked out so that at the time, their meaning was clear, so it is with Chinese pots. To twentieth-century eyes, Chinese pottery may appear merely decorative, yet to the Chinese the form of each object and its adornment had meaning and significance. The dragon represented the emperor, and the phoenix, the empress; the pomegranate indicated fertility, and a pair of fish, happiness; mandarin ducks stood for wedded bliss; the pine tree, peach, and crane are emblems of long life; and fish leaping from waves indicated success in the civil service examinations. Only when European decorative themes were introduced did these meanings become obscured or even lost.

  From early times pots were used in both religious and secular contexts. The imperial court commissioned work and in the Yuan dynasty (A.D. 1279-1368) an imperial ceramic factory was established at Jingdezhen. Pots played an important part in some religious ceremonies. Long and often lyrical descriptions of the different types of ware exist that assist in classifying pots, although these sometimes confuse an already large and complicated picture.

  所考词汇:

  degradation 毁坏,恶化

  cambrian period 寒武纪

  soar 猛增

 

  Irrigation 灌溉

 

       本文解析部分由苏州环球教育 王欣然老师原创,转载请注明作者及出处。

  推荐阅读:2018年9月8日托福真题回忆及分析汇总

查看全文
更多: 托福历年真题

相关阅读

抢占美国名校入学名额,先人一步提前规划,免费进行留学评估!